GRANDE PRAIRIE REGIONAL COLLEGE

DEPARTMENT OF SCIENCE

PC 1310 – Mechanics, 4.3 (3-1-1.5) UT U of A Equivalent – ENPH131

WINTER SEMESTER 2010 - 2011

COURSE OUTLINE

Lectu Labs Seminar		Section A3 Section L1 n S1	T R F R	8:30 - 9:50 14:30 - 17:20 13:00 - 13:50	
INSTRUCTOR:		Dr. Desh Mittra		Office: J215 E-mail: <u>dmitt</u>	Ph. 780 539 2981 ra@gprc.ab.ca
U. of U. of		U. of Alberta U. of Calgary U. of Lethbridge Athabasca Univ.	PC 13 GLGY GEOL GEOL	201 2060	82 Hours3 credits3 credits6 credits
OBJECTVE	mome	Kinematics and dynamics of particles; gravitation; work and energy; linear momentum; angular momentum; systems of particles; introduction to dynamics of rigid bodies are covered in the course.			
Prerequisite: Co-requisite:		MA1000, EG1300 MA1010 Pre- or Co-requisite: PC1300			
Note:	Rest	Restricted to engineering students only.			
TEXTBOOKS		Engineering Mechanics , Statics and Dynamics, 12 th Edition by R. C. Hibbeler, Pearson/Prentice Hall			
	University Physics, 12 th Edition				
	by Hugh D. Young and Roger A. Freedman, Pearson/Addison-Wesley				
LAB BOOK	Phys 130/En Ph 131 Laboratory Manual Department of Physics, University of Alberta				

Lecture Topics

Торіс	Sections in Hibbeler	Sections in
		Young & Freedman
Introductory Material	Chapters 1 & 2	Chapter 1
Kinematics of Rectilinear Motion	12.1–12.3	2.1–2.6
Kinematics of Planar Motion	12.4-12.7,12.9, 12.10	3.1-3.5

Dynamics of a Particle	13.1, 13.2, 13.4, 13.5, 8.1	4.1-4.6, 5.1	
Systems of Particles	13.3, 9.1, 9.3	5.2-5.5	
Work and Energy	14.1-14.6	6.1-6.4, 7.1-7.4	
Linear Momentum and Impulse	15.1-15.4	8.1-8.5	
Introduction to Dynamics of a Rigid Body	16.1-16.3, 17.1-17.4	9.1-9.3, 10.1-10.3	
Angular Impulse and Momentum	15.5-15.7	10.5-10.7	

Laboratory Component

Experiment No.	Week of	Title		
6	January 7/14	Acceleration Due to Gravity		
7	January 21/28	Non-Uniform Motion		
8	February 4/11	Atwood's Pulley		
9	February 18/March 4	Conservation of Mechanical Energy		
10	March 11/18	Collision: Ramp		
11	March 25/April 8	Moment of Inertia		

Prerequisite, Seminars, Assignments and/or Reports

- **Prerequisite:** A good background in Calculus (including Integral and Vector Calculus) is required for this course. Students are also expected to have a fairly good knowledge of Trigonometry.
- Seminars: These are approximately one hour sessions held weekly in which students will be required to solve several problems. The problems will be handed in at the end of the seminar period for marking. Late submissions will not be accepted and will receive zero mark. There will be no exception to this rule. Limited help in solving these problems will be available from the instructor. The first seminar begins the week starting January 13, 2011.
- Assignments: There will be several assignments throughout the semester, each consisting of a number of problems. Due dates will be announced in the class. There will be approximately one assignment weekly. Late assignments will NOT be accepted and will receive zero mark. There will be no exception to this rule. All assignments MUST be written neatly and submitted on 8.5 x 11 in. (Letter size) Engineering paper. All answers should be boxed. Leave space between problems.
- Laboratory: There are six lab sessions which introduce the student to the experimental process and report writing. Students must achieve a score of at least 50% in the lab component of the course in order to obtain an overall passing grade in PC1310. Students who achieve a grade of at least 65% in the lab, but fail the remaining parts of the course may not have to repeat the lab.

Midterm Exam: The midterm will be 1½ - 2 hours long (exact duration TBD), and is a closed-book, closed-notes exam with the formulae sheet provided by the instructor. Date and location will be announced in class. There will be NO makeup midterm exam. If you miss the midterm, your final exam weight will be equal to the combined weight of midterm and regular final exam.

- **Final Exam:** The final exam will be comprehensive and 3 hours long. The final exam is a closed-book, closed-notes exam with the formulae sheet provided by the instructor. Date and location will be announced by the College. **There will be NO makeup final exam.**
- Note: (1) If I cannot read your work, I cannot grade it. Please write neatly and legibly.
 (2) A correct answer without a correct solution will not carry any grade. I do not award for writing irrelevant stuff. For more info see separate sheet provided today.

Last Day of Classes: April 12, 2011

Marks Distribution

Assignments	10%
Seminars	10%
Laboratory	20% (Note: Student must pass lab component to pass the course)
Midterm	25%
Comprehensive Final Exam	35%

Grade Distribution:

Descriptor	Grade	Points	Descriptor	Grade	Points
<i>Excellent</i> 84 – 100%	A+	4.0	Satisfactory 60 – 71 %	<i>C</i> +	2.3
	Α	4.0		С	2.0
	<i>A</i> -	3.7		С-	1.7
Good 72 - 83 %	<i>B</i> +	3.3	Poor	D+	1.3
	В	3.0	Minimal Pass	D	1.0
	В-	2.7	Fail	F	0

Note: Other institutions may not consider grades of **D** sufficient to award transfer credit.

<u>Note</u> - All books and materials are available at the Bookstore